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h te r i rn  Report 

CAVITATION INCEPTION I N  LIQUID NITROGEN 

AND LIQUID HYDROGEN FLOWING IN A VENTURI 

by 
D. K. Edmonds, J. Hord, and D. R .  Millhiser 

ABSTRACT 

Cavitation character is t ics  of liquid hydrogen and liquid ni- 

trogen in a transparent plastic venturi  have been determined. 

experimental data a r e  presented in tabular and graphical form. 

Conventional cavitation -parameter  and he ad -velocity curves  a r e  

given over  the range of experimental  temperatures  ( 3 6 .  5 to 41"R 

fo r  hydrogen and 140 to 170°R for  nitrogen) and inlet velocities 

(70 to 185 ft/sec for hydrogen and 2 0  to 7 0  ft /sec for  nitrogen). 

Minimum local wall p r e s s u r e  was calculated to be l e s s  than bulk 

s t ream vapor p re s su re  by a s  much a s  323 feet  of hydrogen head 

and 63 feet  of nitrogen head. 

The 

v i  



I 1. Introduction 

Cavitation is usually defined as the formation, caused by a reduc- 

tion in pressure ,  of a vapor phase within a flowing liquid o r  at the inter-  

face between a liquid and a solid. 

vapor cavities alters flow patterns,  cavitation may  reduce the efficiency 

of pumping machinery[ 11, and reduce the precision of flow measuring 

devices. 

damage[ 21 to fluid handling equipment. 

Since the formation and collapse of 

Collapse of these vapor cavities can also cause ser ious erosion 

NASA has undertaken a program[ 11 to determine various cavitation 

character is t ics  of different fluids in an effort  to develop design c r i te r ia  

to aid in the prediction of cavitation in pumps. The experimental study 

described herein was conducted in support of this program. 

hydrogen and liquid nitrogen were chosen as tes t  fluids fo r  this study for  

the following reasons: (1) the ultimate goal of this program is to acquire 

sufficient knowledge to permi t  intelligent design of pumps for near-boiling 

liquids and ( 2 )  predictive analyses[ 11 indicated that the physical proper- 

t ies  of hydrogen and nitrogen make them particularly desirable tes t  fluids. 

Liquid 

The objective of this study was to determine the flow conditions 

required to induce cavitation, in liquid hydrogen and liquid nitrogen, on 

the walls of a transparent plastic venturi. The shape of the venturi was 

chosen to  duplicate the test section used by NASA[ 3-61. 

ducted with test section inlet velocities of 7 0  to 185 ft/sec in hydrogen 

and 20  to 7 0  ft/sec in nitrogen. 

36.5 to 41"R with hydrogen and from 140 to 170"R with nitrogen in order  

to determine the effects of temperature upon cavitation inception. 

data reported here  are intended to supplement that given in several  NASA 

technical notes[ 3-61 for a geometrically s imiiar ,  but i. 414 tiilies as large,  

test section. 

nitrogen at about 140"R indicates no scale effects. 

Tests were con- 

Inlet temperatures were varied from 

The 

Comparison of NASA and N B S  inception d a t a  for  liquid 

Both incipient and 
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desinent cavitation data were acquired with no noticeable hysteresis ;  i. e. , 
the flow conditions corresponding to vapor inception a r e  identical whether 

the data point is approached from non-cavitating o r  fully-developed cavi- 

tating flow. In this report, incipience re fers  to the appearance of visible 

vapor cavities, whether they a r e  due to incipient o r  desinent cavitation. 

2. Apparatus 

The facility used f o r  this study consisted of a blow-down system 

with the tes t  section located between the supply and receiver dewars;  

s e e  figure 2. 1. 

transfer to the test fluid. 

ply and receiver dewar pressures .  

the supply and receiver  vessels are indicated on figure 2.1. 

dewar pressure control valving limited the venturi inlet velocity, V , to 

about 185 f t /sec in hydrogen, while the supply dewar p re s su re  rating 

limited the inlet velocity to about 7 0  ft/sec in nitrogen. 

Dewars and piping were vacuum shielded to minimize heat 

Flow control was attained by regulating the sup- 

P r e s s u r e  and volume capacities of 

The receiver  

0 

Valves located on each side of the t e s t  section permi t  flow stoppage 

A plenum in the event of venturi failure while testing with liquid hydrogen. 

chamber was  installed upstream of the tes t  section to a s su re  uniform non- 

cavitating flow a t  the test  section inlet. 

with a 5 Kw heater which was used to heat the tes t  fluid. 

The supply dewar was equipped 

2.1 Tes t  Section 

A photograph of the teat section as viewed through one of the win- 

dowe in the vacuum jacket is shown in f igure 2.2. The t ransparent  plaetic 

venturi waa flanged into the apparatua using high compression elastomeric  

"0" ringrr. Refer-  

ring to  figure 2.3, etatic p re r su re  tap No, 1 was the only instrument port  

drilled and used in the liquid hydrogen inception tests.  Some liquid nitro- 

gen data were  acquired with all of the prerrlrure and temperature  sensing 

Test section details a r e  given in f igures  2. 3 and 2.4. 

2 
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ports  instrumented, figure 2.  2. Since incipient cavitation involves very  

smal l  cavities at o r  near  the minimum pres su re  point---see figures 2 . 4  

and 2 .  5---the presence or absence of the additional sensing ports  has  no 

effect on the data reported. 

a r e  shown on figure 2 . 4 .  

using the plastic venturi as a mold fo r  a dental plaster  plug. 

then removed and measured. 

a c r o s s  the quarter-round contour[ 3 , 7 ]  is shown in figure 2.  5. 

su re  profile has been confirmed using severa l  t es t  fluids[ 3-51 and data 
5 from this study, and applies when (Re)  5: 4 x 10 . 

The design a d  as-built venturi  contours 

The tes t  section dimensions were checked by 

The plug was 

P r e s s u r e  distribution for non-cavitating flow 

This p re s -  

D 
0 

2 . 2  Instrumentation 

Location of the essential  instrumentation is shown on figures 2.1 

and 2.  3.  

Liquid level in the supply dewar was sensed with a ten-point carbon 

Tes t  fluid temperature  in the supply dewar was determined 

Fluid tempera-  

res i s tor  rake. 

by two platinum resistance thermometers ,  see  figure 2. 1. 

tu res  a t the  flowmeter and tes t  section inlet were also measured with plati- 

num resistance thermometers.  

brated to  provide temperature readings accurate  within *O. 04"R. 

thermometers were powered with a cu r ren t  source which did not vary  m o r e  

than 0. 01 percent. 

on a 5 digit electronic voltmeter data acquisition system. 

accuracy of the temperature  measurement  is estimated to be within fO. 09"R. 

These platinum thermometers  were C a l i -  

The 

Voltage drop a c r o s s  the thermometers  was recorded 

The overal l  

System gage and differential p r e s s u r e  measurements  were  obtained 

with p re s su re  t ransducers  mounted in a tempera ture  stabil ized box nea r  

the tes t  section. 

possible to provide maximum resolution. 

calibrated via  laboratory tes t  gages at frequent intervals  during the tes t  

Differential p re s su re  measurements  were used where 

The p r e s s u r e  t ransducers  were 

8 



I 

ser ies .  

and their output was recorded on a continuous t race  oscillograph with 

Repeatability of the transducers was better than *O. 25 percent 
l 

approximately one percent resolution. 

su re  measurement,  including calibration and read-out e r r o r s  is estimated 

to be within *2. 0 percent. 

ous tests. 

The overall accuracy of the p res -  

Bourdon gages were used to monitor the var i -  

I Volumetric and mass flow rates were determined via a Herschel 
I 

venturi flowmeter designed to ASME Standards[ $1. 
of this meter was verified in the s a m e  l ~ l ~ A ~ - , e r  as the t es t  venturi. 

error analysis of this flow device and associated p res su re  and tempera- 

tu re  measurements  indicates an accuracy in mass flow of about one per -  

cent. 

The internal contour 

An 

I 
I 

An electronic pulsing circui t  provided a common time base for 
, correlating data between oscillograph, digital voltmeter, and movie f i l m .  

The data were reduced by first viewing f i l m  of the test event. 

actuated counter, installed adjacent to the tes t  section was energized by 

the electronic pulser and appears on the film, figure 2. 2. Thus, the 

data are reduced at the desired instant of time by simply matching the 

nulmber of voltage pulses which have elapsed. 

A solenoid- 

An acoustic cavitation detection device was developed and success- 

fully used to determine cavitation inception. 

m o r e  sensitive than the human eye, i. e.,  cavitation inception could be 

detected with the acoustic transducer before it was visible to the unaided 

eye. Visible incipience is frequently used as the cri terion f o r  cavitation 

inception and is normally reported in the l i terature since the sensitivity 

[ 9-11] of various acoustic detectors can vary  appreciably. Although the 

data presented he re  are based upon visible incipience, fuii  description of 

the acoustic transducer is given for reference in Appendix A of this paper. 

This device was found to be 

9 



2. 3 Visual and Photogrdphic Aids 

U s e  of a plastic tes t  section, liquid hydrogen, and relatively high 

pressures  precluded direct  visual observation; therefore, closed-circuit 

television was used to observe the tests. 

Movies of cavitation tests were taken at  approximately 2 0  frames 

p e r  second on 16  mm film. 

with a 75 mm lens and synchronized with a high intensity stroboscope, 

providing a 3 CL-sec exposure. The stroboscope was situated direct ly  

opposite the camera  lens and illuminated the tes t  section through a plastic 

diffuser mask; this technique provided a shadow-graph or back-lighting 

effect and excellent contrast  between vapor and liquid phases  in the tes t  

section. 

The variable speed camera  was equipped 

3. Test  Procedure  

The following procedure r e fe r s  to figure 2.1. The supply dewar 

was filled with tes t  liquid and then some of the liquid was extracted through 

valves A and B t o  cool the tes t  section and piping. 

hours were required to cool the plastic tes t  section without breakage. 

Cooldown was monitored via  a platinum resis tance thermometer  in the 

plenum chamber. 

dewar were t ransferred through the tes t  section into the receiver  dewar, 

and then back into the supply dewar again. 

ent i re  flow system in preparation f o r  a test. 

dewar was heated to the desired temperature .  

connecting piping were kept full of liquid a t  low p r e s s u r e  during prepara tory  

and calibration periods between tes ts ,  the plast ic  venturi  was generally 

colder than the test liquid. 

ized to appropriate levels and flow s ta r ted  by opening valve C. 

of non-cavitating flow, inception was induced by lowering the rece iver  dewar 

Approximately two 

Upon completion of cooldown, the contents of the supply 

This operation cooled the 

Next, the liquid in the supply 

Because the tes t  section and 

Supply and rece iver  dewars were  then p r e s s u r -  

In the c a s e  

1 0  



pres su re  and thus increasing the flow velocity until vapor appeared. 

obtain desinent cavitation from fully developed cavitating flow, the receiver 

dewar pressure  was increased until the vapor cavity was barely visible. 

Receiver dewar p re s su re  was remotely controlled by means of a pneumatic 

transmitter, differential controller, and vent valve arrangement,  figure 

2.1. 

throttle valve D for  some of the liquid nitrogen tests.  

by closing valve C. 

t ransferred back into the supply dewar for another test. As previously 

mentioned, the entire tes t  event was recorded on movie f i L x  xhich was 

subsequently used to determine incipient and desinent cavitation conditions. 

To 

It was necessary to increase tes t  section back-pressure by means of 

Flow was terminated 

The supply dewar was  then vented and the test liquid 

I 

I 

1 4. Data Analysis and Discussion 

I A l l  of the useable experimental inception data are given in tables 

4. 1 and 4. 2. 
compensated and presented in table 4.3. 

data is described in Appendix B of this paper. 

These same data points were mathematically temperature-  
I 

Derivation of these compensated 
I 

for  liquid hydrogen Kiv' The conventional cavitation parameter,  

is shown on figure 4. 1. 

of experimental data and this prompted the presentation of calculated data 

given on figures 4. 2 and 4. 3. The calculated data used in the preparation 

of f igures  4.2 and 4.3 are derived as explained in Appendix B and a r e  pre-  

sented in table 4.4. 

manner  and plotted on figures 4.4 a n d  4. 5 from the calculated data of 

table 4. 5 .  

fluids on figures 4.6 and 4. 7. 

Little temperature dependency is evident in thisplot 

The liquid nitrogen data were handled in a s imilar  

Photographs of cavitation inception are shown for  both tes t  

11 
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Figure 4 . 2  Effect  of T e s t  Section Inlet  Velocity and Liquid Tempera tu re  on 
Required Inlet Head for  Cavitation Inception in  Liquid Hydrogen 
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Figure  4. 6 Photograph Showing 
Typical Cavitation 
Inception in Liquid 
Hydrogen 

F igure  4. 7 Photograph Showing 
Typical  Cavitation 
Inception in Liquid 
Nitrogen 



I 4. 1 Data Analysis 

I 
I 

I 

Computed values of K. were plotted as a function of V for both 1v 0 

hydrogen and nitrogen. However, inspection of the plots showed no 

readily discernable temperature  dependence of K. for uncompensated I 
1v 

experimental data (see figure 4. 1; nitrogen is s imi la r  and is not shown). 

The temperature  dependence of K. is complicated by the fact  that 
1v 

errors in the measured variable h 

K. as follows: 

a r e  magnified in the calculation of 
0 

1v 
h - h  

K. 1v = 2gc [ 2 v ] ;  

0 

[ 4 . l - l a ]  

differentiating [ 4. 1- la ]  at constant temperature and velocity there resul ts ,  

dh . dK,  = - 2gC 
2 0  

0 
V 1v [ 4. 1-lb]  

The fractional change in K. 

[ 4 . l - l b l  by [ 4.1-1a1, 

due to a change dh is obtained by dividing 1v 0 

0 
d K. dh 

1v - - .  - -  
h - h  . 

o v  K. 1v 

The fractional change in h due to a change dh 
0 0 

is by definition 

[ 4. 1-21 

The ra t io  of the fractional change in K 

obtained by dividing [ 4. 1-21 by dho/ho, 

to the fractional change in h is iv 0 

23 



0 
h 

dKiv/Kiv - - - a  

h - h  
o v  

dh /h  
0 0  

[ 4. 1-31 

Therefore any scat ter  which may  occur in measuring h will be amplified 
0 h 

0 , which has values as large a s  six f o r  both hydrogen 
h - h  

by the term 
o v  

and nitrogen datt  given in this report. 

Plots were also made of h as a function of V using the experi- 

mental  data from this study. Both hydrogen and nitrogen data showed 0 

distinct temperature dependence; however, there was sufficient experi- 

mental  variation about each desired nominal liquid temperature  to cause 

concern in constructing the individual isotherms. 

o r  nominal isotherm i s  defined as  that temperature  which i s  selected to 

represent a specific group of dhta points with little temperature  variation. 

0 0 

A nominal temperature  

A technique was devised to evaluate the effect of temper i ture  on 

the datu and i s  detailed in Appendix B of this report. 

4. 2 Discussion of Data 

It was pointed out earlier that no temperature  dependence could be 

determined from K vs  V plots when the uncompensated experimental  

data were  used, figure 4.1. However, once the nominal h vs V isotherms 

were established by mathematical  temperature  compensation, the K. v s  

V nominal isotherms may be computed from the basic definition of K. . 
0 1v 

Data on figures 4. 2 and 4.4 represents  the final "best-fit" of the experi- 

mental  data points, "transferred" by means of equations [ 10-31 and [ 10-41 

to the nominal isotherms shown. This method of presenting the h v s  V 

ddta elmindites the scat ter  due to experimentdl f ree-s t ream temperature  

voia t ion .  

trogen at 140'R; see figure 4.4. 

t imes d s  h r g e  a s  the pldstic venturi described herein,  negligible s c d e  

effects crre indicated. 

iv 0 

0 0 

1v 

0 0 

Good agreement was obtained with NASA data[ 71 f o r  liquid ni- 

Since the NASA test section was l. 414 
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t Minimurn local w d l  pressure  wiis cdcula ted  to be less than bulk 

s t ream vapor p re s su re  by as much as  323 feet  of hydrogen head and 6 3  

feet  of nitrogen head. These data are obtained by subtracting h from h 

in tables 4. 1 and 4. 2. 

V 

V 

Figures 4.3 and 4. 5 a r e  presented as a mat te r  of interest ,  but it 

i s  to be noted that these K. 

h vs V curves,  and that e r r o r s  in h are m p l i f i e d  in K (as  was shown 

ear l ie r ) .  Little variation in the shape of the h vs  V curves i s  required 

to eliminate the inflection points in the corresponding K. 

curves depend entirely on the shape of the 
1v 

0 0 0 iv 

0 0 

vs  V curves. 1v 0 

The K curves indicate the usual trends, i. e., K, increases  with in-  
iv 1v 

creasing velocities and decreasing temperatures.  

isotherms for hydrogen intersecting at an inlet velocity of about 140 ft/sec. 

While this intersection is theoretically tendble, i t  could & i o  be crttributed 

to experimental  data scatter. 

perature  dependence, and the data d s o  suggests that K, 

at inlet velocities grea te r  than 140 ft/sec. 

curves  exhibit little temperature  o r  velocity dependence at the higher 

v e loci tie s . 

Figure 4.3 shows the 

The data on figure 4. 1 indicate little tern- 

may be invariant 

Both hydrogen and nitrogen K. 
1v 

1v 

5. Summary 

Cavitation inception parameters  have been experimentally measured  

for  liquid hydrogen and liquid nitrogen flowing in a c lear  plastic venturi. 

The experimental  data points a r e  given in  table 4.1 fo r  liquid hydrogen 

and tcrble 4. 2 for  liquid nitrogen. 

Temperature  compensated values of inlet head, h versus  inlet 
0 

a r e  presented on a background of mathematically tempera-  
vO* 

velocity, 

tu re  compensated isotherms;  liquid hydrogen data a r e  shown on figure 

4. 2 dnd liquid nitrogen dzta +?ear on f igure 4.4. 

constructed f rom the liquid nitrogen data i s  coincident with data furnished 

The 140"R isotherm 
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by Ruggeri[ 71. 

factor of 1.414:l; therefore,  negligible scale effects a r e  indicated. 

mathematical technique used to temperature-compensate the experimental 

data is  outlined in Appendix B of this paper. 

The venturi used in that experiment[ 43 was la rger  by a 

The 
, , 

I 

Figure 4.1 shows experimental K. data points f o r  liquid hydrogen; 1v 
these data have not been temperature Compensated and show no particular 

temperature trends.  

cavitation parameter ,  K 

Temperature compensated values of the conventional 

, are also shown on figure 4 .3  for  liquid hydrogen 

these curves have becn derived f rom 

I 
I 

iv 
and on figure 4. 5 for  liquid nitrogen: l 
the smooth isotherms on the h vs  V plots (figures 4. 2 and 4.4).  The 

data shows that K.  increases  with increasing velocities and decreases  
0 0 

I 

1v 
with increasing temperatures.  A t  the higher velocities the K curves ~ iv 
indicate very little temperature  o r  velocity dependence. 

to construct f igures 4. 2 to 4. 5 are given in tables 4. 3 to 4. 5. 

The data used 

The experiments showed that both liquid hydrogen and liquid 

nitrogen can sustain relatively large magnitudes of thermodynamic meta-  

stability; i. e . ,  minimum local wall p re s su re  was calculated to be con- 

siderably less  than bulkstream vapor pressure.  

stability for the various experiments is obtained by subtracting h from h 

in tables 4. 1 and 4. 2. 

The magnitude of meta-  
V 

V 
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0 
A 

C 
P 

P 
E 

7. Nomenclature 

2 = test section inlet flow a r e a  [ = 0. 008063 f t  ] 

= pres su re  coefficient [ =  (h - h )/(V 2 /2gc)] 

= minimum pressure  coefficient [ = (h V - h )/(Vo 2 /2gc)] 
x o  0 

0 

0 
D 

gC 

= constants appearing in equation [ 10-11 which a r e  

evaluated from best f i t  curves  through h v s  V data 

points 

'n, (n=1,2---) 

0 0 

= test section inlet diameter 

= conversion factor in Newton's law of motion, given in  

engineering units as g = 32.  2(ft)(pounds mass) / ( sec  2 
C 

(pounds force)  

tes t  section inlet head corresponding to absolute inlet 

pressure,  f t  

= 
0 

h 

h 
oa1  

V 
h 

X 
h 

= value of inlethead corresponding to a data point before 

it is "transferred" to a new position, f t  

value of inlet head corresponding to a data point af ter  

i t  has been "transferred" to a new position, f t  

head corresponding to saturation o r  vapor p re s su re  

at test section inlet temperature,  f t  

= head corresponding to absolute pressure  measured at 

wall of plastic venturi at distance x downstream of the 

minimum pressure point, f t  

= 

= 
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t 

h' 

Kiv 

m 

0 
P 

V 
P 

0 

0 
T 

O8 
T 

T '  
0 

T " 
0 

head corresponding to minimum absolute pressure  on 

quarter round of plastic venturi contour, ft,  computed 

f rom expression for C 

incipient cavitation parameter  [ = ( h  - h )/(V '/2gC)] 

m a s s  flow rate,  e. g . ,  (pounds mass) / sec  

tes t  section absolute inlet p ressure  

saturation o r  vapor pressure  a t  tes t  section inlet tem- 

pe rature  

Reynolds number based on tes t  section inlet diameter 

temperature in degrees Rankine, of bulk fluid entering 

the tes t  section 

the inlet temperature  f rom which a data point is to be 

" tr an sf e r r ed" 

the inlet temperature  to which a data point is being 

"transferred" 

the nominal temperature  chosen for  construction of a 

"base" isotherm due to the availability of sufficient 

h vs V data a t  o r  near  that temperature  

a nominal isotherm on a h vs V plot 

a nominal isotherm, different f rom T I ,  on a h va 

v 

P 

o v  0 

0 0 

0 0 

0 0 

v plot 
0 
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0 
V 

X 

= velocity of tes t  fluid at inlet to venturi t es t  section 

distance measured from minimum pressure  point on 

quarter-round contour along axis of plastic venturi 

= 

29 
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9. Appendix A---Acoustic Detector 

A detailed drawing of the acoustic transducer is given on figure 

9. 1 and a schematic of the instrument hook-up is given on figure 9. 2. 

The transducer consists of a Barium-Titanate piezoelectric crystal  

sandwiched between the body of the transducer and a machine screw, 

figure 9. 1. 

c rys ta l  could be varied by means of the machine screw. 

sensitivity of the crystal  to mechanical vibration could be adjusted some- 

what. Electr ical  leads were attached to the adjustment sc rew and to the 

body of the transducer. Coaxial electrical wire was used to connect the 

transducer to a cathode-follower-arnplifier, s e e  figure 9.2, The signal 

was then fi l tered through a variable band-pass filter and displayed on an  

oscilloscope. 

of 3 to 200 k-Hz for  most  tests. 

The mechanical coupling or initial compression level in the 

Thus, the 

The band-pass filter was s e t  to adinit signal frequencies 

The acoustic transducer was screw-mounted in the downstream 

flange of the plastic venturi via pipe threads. 

and noise appeared to be of low frequency and was easily eliminated with 

the band-pass filter. 

Most of the system vibration 

Cavitation was readily discernable on the oscilloscope and was 

characterized by large-amplitude, high-frequency signals. 
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10. Appendix B---Method Used to 

Compensate the Experimental Inception Data for 

Temperature Deviation about the Nominal Isotherms 

(1) It was assumed that a change in  inlet temperature,  dT  will 
0 

produce a change in inlet head, dho, along a constant velocity path, which 

will be a function of the velocity and temperature only; it is also assumed 

that this function may be approximated by a few t e r m s  of a polynomial. 

Justification of these assumptions i s  evidenced by the good resul ts  which 

were obtained for  both hydrogen and nitrogen (see figures 4.2 and 4.4)  

by using the following equation: 

dh = [ CIT t CZTo t C3V02 t C4Vo t Cs] dTo. [ lo-11 
0 0 

Holding V constant and integrating from h to 11 and from T to 

T 
0 0, 0 9 2  0 , l  

there  results:  
0 . 2  

[ 10-21 

where the subscript  " 1 "  refers to the position of a data point before i t  is 

t ransfer red  to a new position identified by the subscript " 2 " .  

F o r  each of the following steps (two through seven) there  is a 

corresponding graphical illustration on Figure 10. 1. 

( 2 )  h vs  Vo experimental data were plotted, a separate  graph 
0 

being used fo r  each tes t  fluid. The data points were identified with their 

individual temperatures so that "best-fit" curves could be drawn through 

each group of data points having a common nominal temperature. 

nominal temperature is defined a s  that temperature which is selected to 

A 
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Figure  10. 1 I l l u s t r a t ion  of Method Used  to C o n s t r u c t  Nominal  I s o t h e r m s  f r o m  
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represent  a specific group of data points having little temperature variation. 

These first-approximation isotherms are  shown as dashed lines on step 

two of figure 10. 1. 
I 

One of the nominal isotherms i s  chosen, on the basis of availability 

of sufficient experi-mental h v s  V data at o r  near  that temperature,  as a 
0 0 

reference or  "base" isotherm for succeeding computations. 

is designated T 

This isotherm 

in figure 10. 1 while the other isotherms a r e  designated 
0, B 

T ' and To''. 
0 , 

( 3 )  The constants in equation [ 10-21 a r e  evaluated by selecting 

pa i rs  of values of h and T f rom the nominal isotherms at identical 

velocities as follows: on figure 10. 1 the tail of each a r row indicates a 

value of h and T while the a r row head points to h and T The 

coordinate points from each a r row a r e  then used in equation [ 10-21. Note 

that each ar row provides one equation, hence five a r rows  a r e  needed to 

evaluate the constants in [ 10-21. The a r rows  always follow a constant 

velocity path and mus t  be strategically placed in order  fo r  the five equa- 

tions to be independent. The actual data points a r e  not shown since they 

are not used in this step. 

data from one temperature to another within the confines of the bounding 

isotherm s. 

0 0 

0 8  1 0, 1 0 , 2  0 , 2 '  

The equation derived from this step will "transfer" 

(4) In step four of the illustration, arrows a r e  used to indicate the 

"transferral" of experimental data points to a new location near  the base 

isotherm, h and T are known from the experimental data, while 

; values of h can 
OJ 1 0, 1 

To, B 0 1  2 
is simply the base nominal temperature, To, 2 

then be determined, by using equation [ 10-21, and plotted near  the base 

, To, B 
Note that the data t ransfer  always follows a constant temperature,  

velocity path. 
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( 5 )  A new "best f i t "  isotherm can then be drawn through - all of the 

"transferred" data points a t  T This new curve is shown as a solid line 
0, B' 

in figure 10. 1; the f i r s t  approximation isotherms, drawn as dashed lines, 

a r e  no longer needed and a r e  omitted in the illustration of this step. The 

curve obtained from this step represents  an improved reference isotherm. 

(6) The new reference isotherm and equation [ 10-21 may now be 

used to reconstruct the other nominal isotherms. T and T I t  may be 

reconstructed by using equation [ 10;2] and h 
0 0 

values from the new base 
0, 

isotherm, Note that T now becomes T and To1 and To" take their 
0, €3 O t 1  

respective turns as T 

plot the two new isotherms shown in the illustration of this step on figure 

10.1.  

Values of h are then computed in order  to 
0, 2' 0,2 

( 7 )  The original experimental data points were then t ransferred 

to their nearest  nominal temperature by means of equation [ 10-21. 

points having a nominal temperature of T 
position in step four. 

spective isotherms, as shown by the a r rows  in the illustration of step 

Those 

were relocated in their  final 
0, B 

This process  brings the data points near  their  re- 

seven. Note that h is again the only unknown in equation [ 10-21. 
0, 2 

( 8 )  The agreement between the new nominal isotherms and the 

t ransferred experimental data points was then observed: If the f i t  was 

not satisfactory, "best-fit" curves were  drawn through the "transferred" 

data points and the entire computational procedure---steps ( 3 )  through 

( 7 )  --- was repeated. 

mathematical expressions for liquid hydrogen and liquid nitrogen: tables 

4.3, 4.4, and 4. 5 as well as figures 4. 2 and 4.4 were prepared by using 

the following equations. 

Several iterations were necessary  to obtain suitable 
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Hydrogen: 

- T ) (0.41 V - 400. 35). 
+ ( T o , 2  0,1 0 

[ 10-31 

Nitrogen : 

)2] t 30. 152 ( T  - T ). [ 10-41 
0 9 2  0,1 

-0.2729 [ (To,  2)2  - ( To, 

It should be  noted that some of the t e r m s  in equation [ 10-21 become 

negligible and consequently a r e  not included in [ 10-31 and [ 10-41. It is 

observed that equation [ 10-31 f o r  hydrogen is v e l x i t y  dependent, while 

equation [ 10-41 for  nitrogen i s  not. 

[ 10-31 and [ 10-41 be used outside the general  a r e a  of the data points 

given. 

It is not recommended that equations 
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